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Research activity framed within the project “Committee on Earth
Observation Satellites – Disaster Risk Management “(CEOS-DRM)

• Contribution to the activity of CEOS Working Group on
Disasters (Recovery Observatory and GEO-DARMA pilot);

• Development of change detection methodologies for the
environmental monitoring of the recovery phase after
disasters;

• Special focus on both radar and optical sensors (COSMO-
SkyMed and Plèiades data);

• Case study: aftermath of Hurricane Matthew, which struck
the southwest department of Haiti in October 2016 leading to
more than 1000 lives lost and to severe damage to buildings,
forests, and agriculture.



Change detection methodologies
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➢ Multitemporal fusion at the feature level

o multitemporal information extracted through the generation of new 
features able to emphasize changes in the data set;

o mainly related to unsupervised detection approaches;

o mostly (almost always) single-sensor;

o final product usually limited to binary “change vs. no-change” case.

➢ Multitemporal fusion at the decision level 

o higher semantic level analysis;

o explicit characterization of the typology of occurred changes;

o mainly related to supervised (possibly semi-supervised) approaches;

o especially relevant for detailed post-analysis (e.g., monitoring, 
recovery analysis).



Proposed methodological approach
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Objective:

Formalize the change-detection problem through a multitemporal
supervised classification approach for multisensor optical/SAR data taking
advantage from the temporal and spatial information associated with the
images

Data set: multitemporal, very high resolution (VHR), multisensor imagery

Key approaches:

➢ Multiscale region-based concepts

➢ Markov random field (MRF) modeling
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Region-based approach:

o characterization of the geometrical structure associated with VHR
images;

o takes advantage of both fine-scale and coarse-scale spatial behaviors
through multiple segmentation maps at different spatial scales.

MRFs:

o major families of (undirected) probabilistic graphical models;

o naturally formalize global Bayesian decision criteria;

o capability to fuse together data belonging to different sources;

o integration of spatial context and temporal correlation associated
with images acquired at different dates on the same area;

o classification through minimum-energy rules.



Proposed MRF energy function
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The contextual spatial information related to each image, the temporal correlation
between the images, and the multiscale information provided by the set of
segmentation maps are fused together as a linear combination of different energy
contributions:

j

j

𝑈 𝒴0, 𝒴1 𝑆0, 𝑆1

= −

𝑡=0

1



𝑖∈𝐼



𝑞=1

𝑄

𝛼𝑞𝑟 ln 𝑃 𝑠𝑖𝑞𝑡 𝑦𝑖𝑡 − 𝛽𝑡

𝑖~𝑗

𝛿 𝑦𝑖𝑡, 𝑦𝑗𝑡 + 𝛾𝑡

𝑖⋈𝑗

𝑃 𝑦𝑖𝑡 𝑦𝑗,1−𝑡

Energy contribution
related to each

segmentation map

Spatial-contextual
energy contribution
associated with the 
image on each date

Temporal energy term
(transaction probability

matrix) across the 
acquisition dates

𝑡 = 0 𝑡 = 1



Proposed MRF energy function

Andrea De Giorgi – DITEN

𝑈 𝒴0, 𝒴1 𝑆0, 𝑆1

= −

𝑡=0

1



𝑖∈𝐼



𝑞=1

𝑄

𝛼𝑞𝑡 ln 𝑃 𝑠𝑖𝑞𝑡 𝑦𝑖𝑡 − 𝛽𝑡

𝑖~𝑗

𝛿 𝑦𝑖𝑡, 𝑦𝑗𝑡 + 𝛾𝑡

𝑖⋈𝑗

𝑃 𝑦𝑖𝑡 𝑦𝑗,1−𝑡

• Represented by the Probability Mass Function (PMF) of the considered
segment labels conditioned to the thematic classes

• Estimation is based on a relative frequency approach
• Requires as input classification maps obtained from the acquired image
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The Potts model is adopted with a second order neighborhood system
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Given the pixelwise posterior probability of the class labels, the
estimation of the transition probabilities is performed through the
expectation-maximization (EM) method
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➢ Parameter estimation:

The estimation of the weights (𝛼, 𝛽, 𝛾) of each energy contribution is
performed through the method presented in (De Giorgi et al., 2015),
which is based on a mean square error approach and on the
sequential minimal optimization (SMO) algorithm.

➢ Energy minimization by graph cut:

- energy minimization as a maximum flow problem

- global minimum for binary classification

- “strong” local minimum in the multiclass case



Proposed methodological approach 
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Examples of results
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➢ Data set acquired during 2016 and 2017

Jérémie_2016:
o Pansharpened Pléiades multispectral

acquisition date 7/10/2016 (few days after
Hurricane Matthew), 4 channels, native
resolution: 2m for multispectral channels
and 0.5 m for the panchromatic channel)

Jérémie_2017”:
o Pléiades multispectral, acquisition date

18/10/2017, 4 channels, resolution 2 m;
o COSMO-SkyMed Spotlight, acquisition

date 2/12/2017, resolution 1 m



Examples of results (10m resolution)
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Jérémie_2016: classification map obtained from the
application of the proposed algorithm; Producer
Accuracy (PA) and Overall Accuracy (OA)

Jérémie_2017: classification map obtained from the
application of the proposed algorithm; Producer
Accuracy (PA) and Overall Accuracy (OA)



Examples of results (10m resolution)
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Change-map derived from the application of the proposed
method

Highlighted transition: 

Detail: Urban area. RGB composition Jérémie_2017 (left), RGB composition Jérémie_2016 (center) and change-map (right)

Gray scale visualization in the change-map is related to no-change transitions.



Examples of results (10m resolution)
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Detail: Mouth of the river Grande Anse. RGB composition Jérémie_2016 (a), classification map Jérémie_2016 (b), RGB
composition Jérémie_2017 (c), classification map Jérémie_2017 (d), RGB composition Jérémie_2017 - 2m resolution (e),
and change map (f)

(a)

(b)

(c)

(d)

(e)

(f)



Examples of results (10m resolution)
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Jérémie_2016: Classification map generated through MSVC-GC Jérémie_2016: Classification map generated through RF

Jérémie_2016: Classification map obtained through the proposed approach



Examples of results (2m resolution)
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Detail: Urban area of Jerèmie. RGB composition Jérémie_2016 (a), RGB composition Jérémie_2017 (b), and change map (c).
Gray scale visualization in the change-map is related to no-change transitions.

(a) (b) (c)

Obtained Change-map

URBAN - VEG

URBAN - GRASS

VEG - URBAN

VEG - GRASS

GRASS - URBAN

GRASS - VEG

Urban area of Jeremie_2016,
RGB composition

Urban area of Jeremie_2017,
RGB composition
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➢ Change detection and identification of land cover classes and land cover
transitions

➢ Characterization of the typology of the occurred changes

➢ High Overall Accuracy on the test set

➢ Applicability to images characterized by an arbitrary probability distribution
function

➢ Significant improvement wrt the initial classification map used for the PMF
estimation

➢ Limited sensitivity to the number of segmentation maps used
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