

living planet MILAN 13-17 May 2019

On the use of high and very-high resolution optical remote sensing for the post-Matthew recovery phase in Haiti

Faivre, R.¹, Collet, A.², De Boissezon, H.²

- 1. ICube-SERTIT, Unistra-CNRS (UMR 7357), Strasbourg, France
- 2. Centre National d'Etudes Spatiales (CNES), Toulouse, France

European Space Agency

Background

The Recovery Observatory (RO) project aims at demonstrating the value of EO satellites to support the post-disaster recovery phase

Already two years of operationnal cooperation between European and Haitian partners

Several products based on optical EO data have been released ...

Outline

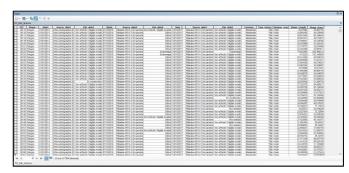
Several applications through the following thematics :

- Building damage assessment & reconstruction monitoring
- Population dynamics within protected areas
- Vegetation classification & damage assessment to forest stands
- Coastline delineation & evolution rate
- Impact assessment to agricultural areas & mangroves
- Large-scale Land-use/Land-cover mapping

Building damage assessment & reconstruction monitoring

Context:

- Need of an up-to-date database of building footprints
 - → Territory development and planification purposes
- To speed-up the damage assessment after a disaster
- VHR satellite data = a « low cost » synoptic vision
- Possibility of regular updates
- First study over the city of Jérémie

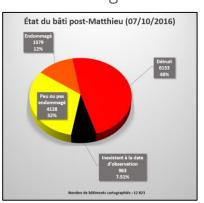

Approach:

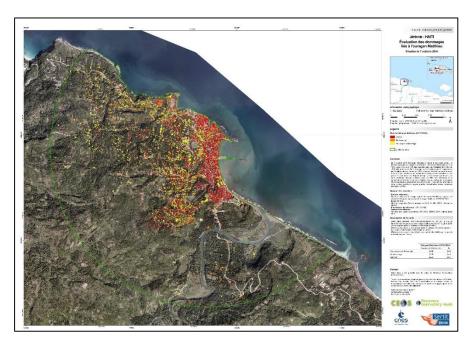
- By mean of visual interpretation
- Situation as of 2014 (reference) from ortho-photo coverage
- Damage assessment (10/2016) from Pléiades data
- Reconstruction monitoring one year after (10/2017)
- State_2014, State_2016, State_2017, Roof_Type, Function

Type toiture:
Tôle (1)
Maçonnerie (2)
Bois (3)

Etat:
Non affecté / Dégâts invisibles (1)
Endommagé (2)
Détruit (3)
En construction (4)
En ruine (5)
Non existant (6)

Fonction:
Résidentiel (1)
Commercial (2)
Industriel (3)
Agricole (4)
Education (5)
Institution (6)
Loisirs (7)
Religieux (8)
Militaire (9)
Médical (10)





Results:

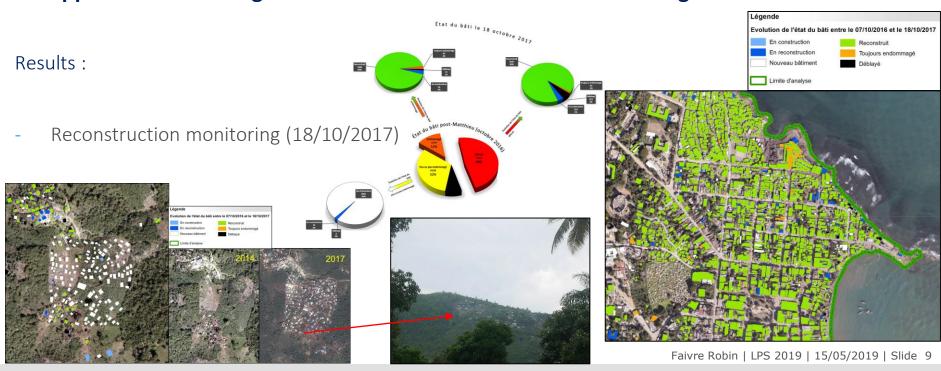
Damage assessment (07/10/2016)

Faivre Robin | LPS 2019 | 15/05/2019 | Slide 8

État du bâti post-Matthieu (07/10/2016)

Peu ou pas endommagé

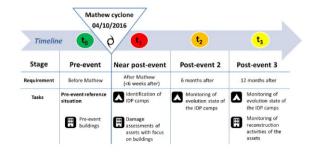
Endommagé



Context:

- Request for an extension of the study area (Jérémie, Les cayes)
- Damage assessment and reconstruction activities
- Identification and monitoring of IDP camps
- Products realised in the frame of Copernicus EMS RRM:

https://emergency.copernicus.eu/mapping/list-of-components/EMSN050



Approach:

Code	t ₀	t ₁
1	1-Fully Functional (pre-event)	1-Not visible dama
2	2-Not functional (pre-event)	2-Damage
3	N/A	N/A
4	N/A	N/A

Codes used in every time stage.

5-Not present in to

9-Unknown

Code	Reconstruction Class	Comments	Additional comments
111	Unchanged functional	Unchanged functional, fully functional buildings in $t_0,t_1,$ and t_3	N/A
211	Unchanged functional	Unchanged functional, fully functional buildings from t ₁	N/A
511	Unchanged functional	Unchanged functional, not present in t ₀	Building not present in t ₀
222	Unchanged not functional	Unchanged not functional	N/A
522	Unchanged not functional	Unchanged not functional, not present in t_0	Building not present in t ₀
121	Damaged and rebuilt	Damage and rebuilt, when the reconstruction work has been completed	N/A
221	Damaged and rebuilt	Damage and rebuilt, when the reconstruction work has been completed (damaged in t0)	N/A
521	Damaged and rebuilt	Damage and rebuilt, when the reconstruction work has been completed, not present in t ₀	Building not present in t ₀
122	Damaged and still not rebuilt	Damaged and still not rebuilt, visible damage in t1 but still not functional in t3 (possible ongoing rebuilt)	N/A
123	Damaged and removed	Removed, cleared at t_3 , but there existed a building at t_0 or t_1	N/A
523	Damaged and removed	Removed, cleared at t_3 , but there existed a building at t_1 , not present in t_0	Building not present in t ₀
223	Removed	Not functional building in t_0 and t_1 and finally removed in t_3	N/A
554	New building in t3	New structure visible in t ₃ , not present in t ₀ or t ₁	Building not present in t ₀
112	Abandoned	Building without maintenance and not functional in t ₃	N/A

Faivre Robin | LPS 2019 | 15/05/2019 | Slide 11

5

5-Not present in t1

9-Unknown

9-Unknown

t₃

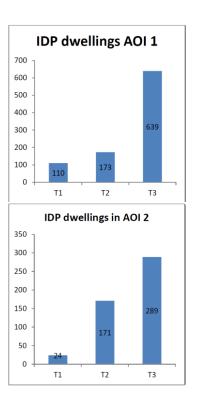
1-Not visible damage

2-Damaged

3-Cleared

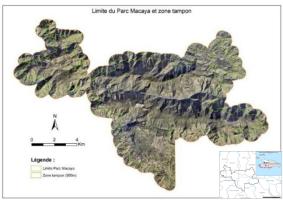
4-New building in t3





Results:

Population dynamics within protected areas

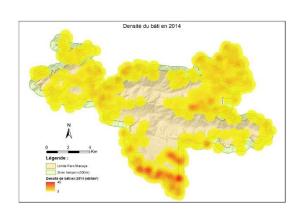


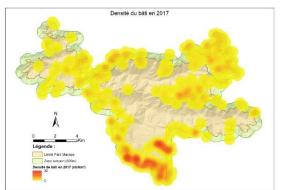
RO applications – Population dynamics

Context & approach:

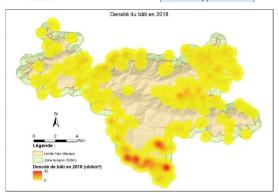
- Request for an overview of human settlements over the Makaya Park
- Identification of buildings for 2014 (orthophoto)
- Monitoring for 2017 & 2018 (Pléiades data)
- Buffer area of 500 m (merge of protected areas)

Faivre Robin | LPS 2019 | 15/05/2019 | Slide 14



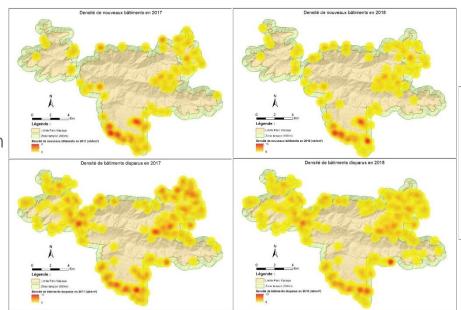

RO applications – Population dynamics

Results : Density over time


	2014
Nombre de bâtiments	1 299
Surface de la zone d'étude	15 105 ha
Densité	8,6 bâtiment/km²

	2014-2017
Bâtiments toujours présents	637
Nouveaux bâtiments	153
Bâtiments disparus	546
Bâtiments non analysés (nuages)	116
Surface de la zone d'étude	15 105 ha
Densité	Non applicable

	2014-2017-2018
Bâtiments toujours présents	533
Nouveaux bâtiments	232
Bâtiments reconstruits	25
Bâtiments disparus	554
Bâtiments non analysés (nuages)	219
Surface de la zone d'étude	15 105 ha
Densité	Non applicable



RO applications – Population dynamics

Results:

- Dynamic of changes
- Density of reconstruction

Faivre Robin | LPS 2019 | 15/05/2019 | Slide 16

Densité de bâtiments reconstruits en 2018

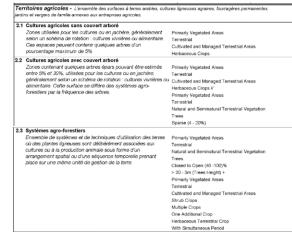
Impact assessment to agricultural areas

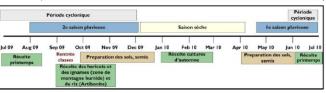
Context:

- To identify changes that occured over agricultural areas
- Need of pre & post-disaster situation maps
- Cross-comparison for change map production
- Areas of interest n°1, 4 & 5
- Products realised in the frame of Copernicus EMS RRM :

https://emergency.copernicus.eu/mapping/list-of-components/EMSN051

Faivre Robin | LPS 2019 | 15/05/2019 | Slide 18





Approach:

- Small-size crops, complex agricultural calendar, cloud cover ...
 - → Impossibility to identify crop types
- Importance of woodland (i.e. agro-forestry)
 - → Focus on this component within agricultural landscapes
- Tens of Pléiades & SPOT-6/7 data were required!

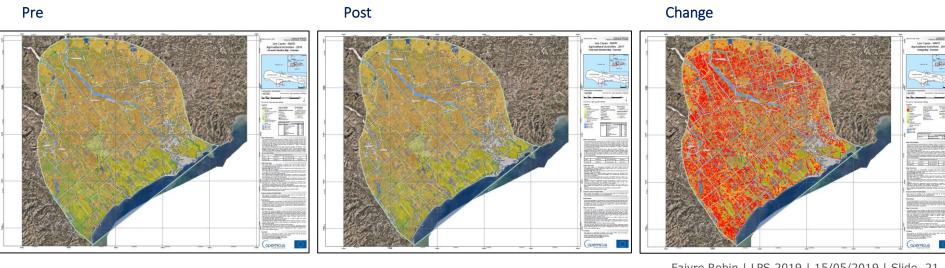
Approach:

- Extraction of woodland surfaces, & classification based on surface/density
 - → Distinction between « forest », « copse » & « isolated trees »
- Extraction of « low-lying vegetation » & « crops »
 - → Based on the persistence of vegetation over time
- Extraction of « shrubs » : residual after forest separation

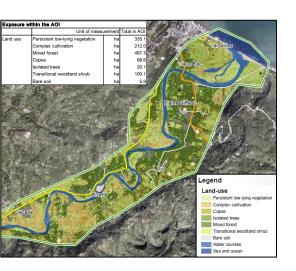
Class number	Tree cover class	Class criteria
313	Mixed forest	Density >= 10% Size >= 0.5 hectares
314	Mangrove	Initial area photo-interpreted from tree- cover classification
315	Copse	Size >= 0.02 hectares and <=0.5 hectares
316	Isolated trees	Trees outside the above classes

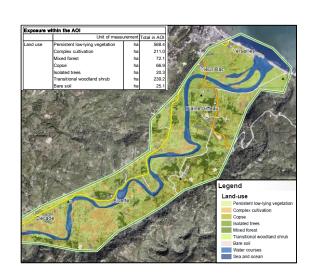
Class Number	Tree density class	Class criteria
1	Low density trees within agricultural area	Density >= 10% and Density < 30%
2	Trees within agri-forestry system	Density >= 30% and Density < 65%
3	Dense woodland	Density >= 65%

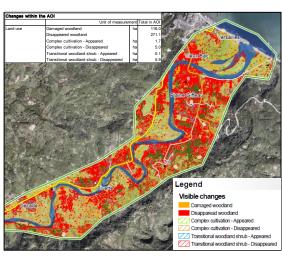




Results:







Results:

Faivre Robin | LPS 2019 | 15/05/2019 | Slide 22

Vegetation classification & Damage assessment to forest stands

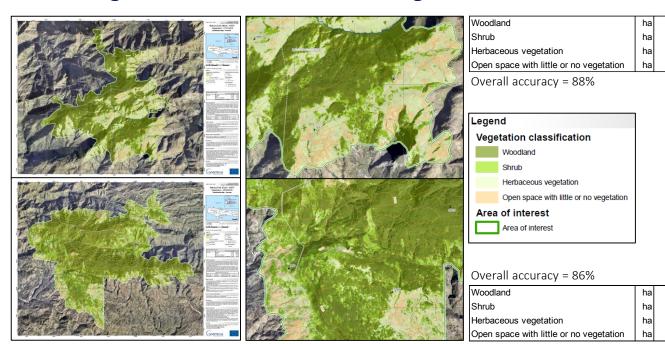
Context:

- Request for an impact assessment over the Makaya Park (2 protected areas)
- Need of a pre-disaster vegetation's classification map
- Post-disaster damage assessment within the « woodland » class
- Regeneration monitoring one year after
- Products realised in the frame of Copernicus EMS RRM :

https://emergency.copernicus.eu/mapping/list-of-components/EMSN051

Approach:

- 4 classes : « woodland », « shrub », « herbaceous » & « open spaces without vegetation »
- Supervised classification on SPOT-6/7 pansharpened data (June 2016)
- Samples provided by a national database of observations by point (2010)
- Agregation of the database classes
- Correction by photo-interpretation (orthophoto 2014)
- Sampling / training / classification (RF) / validation



Forest = 55%

Forest = 54%

RO applications – Vegetation classification & Damage assessment to forest stands

Results:

le or no vegetation | ha | 376.5 | Faivre Robin | LPS 2019 | 15/05/2019 | Slide 26

4704.5

2258.6

1379.6

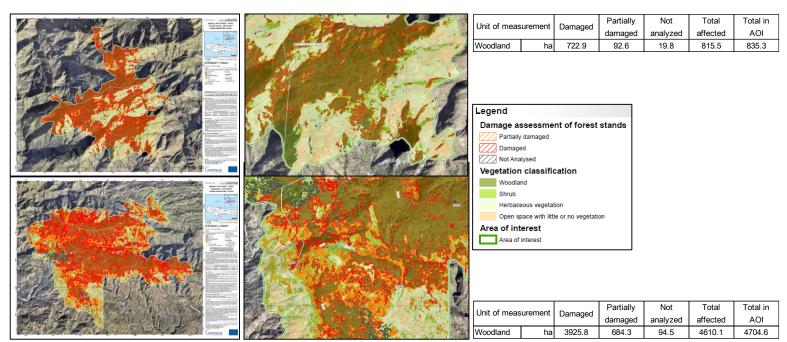
835.3

153.4

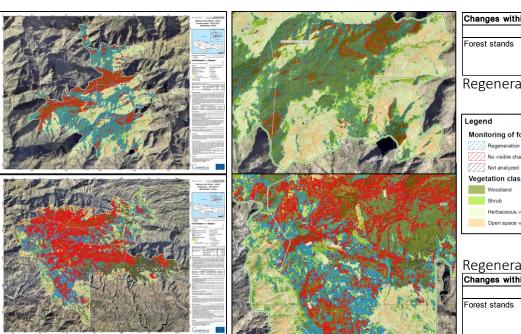
438.9

Approach:

- Identification of damaged forest stands from VHR images: 100% impacted!
- Grade assessment : « partially damaged », « damaged » & « Not analysed » (i.e. cloud cover)
- Simple method based on the vegetation activity (still active vs. no activity)
- To deal with shadows: use of an hillshade mask for a separate thresholding
- Monitoring of the regeneration one year after, based on the same principle (and constraints)



Results:



Results:

Changes within the AOI			
	Unit of measurement Total in AOI		
Forest stands	rest stands No visible change		297.6
	Regeneration	ha	515.6
	Not analysed	ha	22.2

Regeneration = 60%

Regeneration = 50%

	Changes within the	AOI		
k		Unit of measurement Total in AOI		
	Forest stands	No visible change	ha	1759.2
ā		Regeneration	ha	2336.5
		Not analyzed	ha	608.8

Impact assessment to mangrove

RO applications – Impact assessment to mangrove

Context:

- Impact of the cyclone to mangrove?
- Need of pre & post-disaster situation maps
- Cross-comparison for change map production
- Area of interest n°6
- Products realised in the frame of Copernicus EMS RRM:

https://emergency.copernicus.eu/mapping/list-of-components/EMSN051

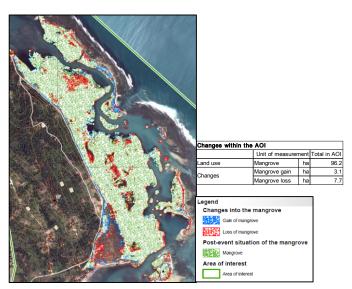
RO applications – Impact assessment to mangrove

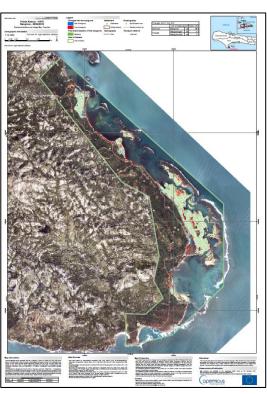
Approach:

- Visual identification of mangrove areas from VHR images (0.5 m)
- Rough delineation, binary mask
- Precise extraction of mangrove : f(Red, NIR, SI, BI, Mask)
- Morphological operations and filtering
- Extent for 2016 & 2018
- Loss and gain over this period

NDVI

Shadow Index





RO applications – Impact assessment to mangrove

Results:

Faivre Robin | LPS 2019 | 15/05/2019 | Slide 33

Coastline delineation & evolution rate

RO applications – Coastline delineation & evolution rate

Context:

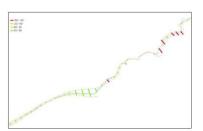
- Archives of coastline delineation for 1978, 2002 & 2010
- Post-Matthew coastline position
- From Jérémie to Les Cayes (≈250km)
- Computation of evolution rate
- Products realised in the frame of Copernicus EMS RRM:

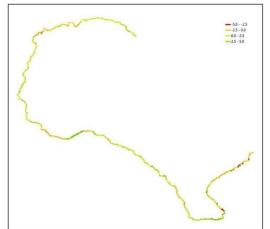
https://emergency.copernicus.eu/mapping/list-of-components/EMSN051

RO applications – Coastline delineation & evolution rate

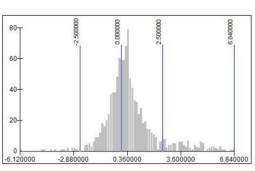
Approach:

- Definition of the coastline (tricky !)
- SPOT-6/7 coverage (1.5 m) acquired the 14/02/2017
- Manual delineation, quality control
- Use of the Digital Shoreline Analysis System (USGS)
- Evolution rate computed along regularly spaced transects




RO applications – Coastline delineation & evolution rate

Results:


- More progradation than erosion
- Geometrical accuracy of archives ?

Coastal line	Length (km)
2017	247.8
2010	247.6
2002	256.4
1978	241.9

Coastal line evolution rate (m/year)	Number of transects
-5.0 to -2.5	14
-2.5 to 0.0	368
0.0 to 2.5	565
2.5 to 5.0	95

Faivre Robin | LPS 2019 | 15/05/2019 | Slide 37

Large-scale Land-use/Land-cover mapping

RO applications – Land-use/Land-cover mapping

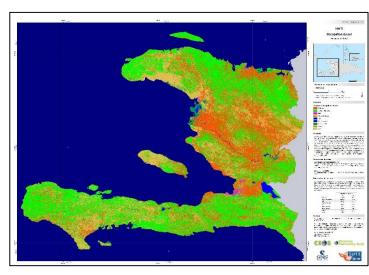
Context:

- Land-cover is a critical issue in terms of Development and Disaster Risk Reduction in Haiti
- Lack of recent LULC map over Haiti: the last one was produced in 1998!
- Rapid evolution of landscapes
- Impact of the Matthew cyclone to tree cover

RO applications – Land-use/Land-cover mapping

Approach:

- To take benefits from the Copernicus Sentinel-2 mission
- Processing chain for operational LULC mapping based on S-2 L2A developed by CESBIO (iota²)
- Enhanced Sentinel-2 L2A datasets produced by Théia/CNES over Haiti
- First experiments on the adaptation of *iota*² processing chain
- Production of LULC map for 2017



RO applications – Land-use/Land-cover mapping

Results:

- To deal with clouds!
- Promising ... but well ...
- Come to see why at the next poster session :
 - « Towards an operational land-use mapping over Haiti from Sentinel-2 »
- More details about *iota*² over France at this session :
 - « Mapping France's Land-cover at 10 m Every Year. Lessons Learned and Future Improvement » (J. Inglada, 11h40, Space 2)

RO applications – Perspectives

- Monitoring of human activities within Makaya Park
- New monitoring of vegetation regeneration
- New vegetation classification (situation as of 2019)
- Production of LULC map for 2018 (ongoing improvements)
- Large-scale & long-term monitoring of mangroves
- Landslide inventory (EOST)
- Radar-based change detection & ground movement (ASI/CIMA)

Faivre Robin | LPS 2019 | 15/05/2019 | Slide 42

Thank you for your attention!

